University of Michigan 

Image: milkisprotein

You could be forgiven for thinking physicists are obsessed with monumental architecture. Although their investigations often involve objects at the subatomic scale, the machines they use can be enormous. In 2008, for instance, construction work finished on the Large Hadron Collider (LHC), straddling the Swiss-French border. Sometimes described as the world’s largest machine, the LHC is a 27-kilometer-long circular accelerator that cost several billions. Already there is talk of building even larger particle accelerators. Early in 2019, some of the physicists who helped build the LHC floated the idea of a new circular accelerator 100 kilometers long.

But there is now a new kind of scientific machine on the horizon: a trimmed down particle accelerator that is small enough to fit on a tabletop. Diminutive they may be, but these table-top accelerators are still bursting with the power and versatility scientists demand to perform cutting-edge research. Already they have helped physicists better understand the 3D-printed metal components that could one day be used in aircraft manufacturing, and experiment with a new and improved way to hunt for cancer tumors. What’s more, the table-top devices should be so cheap to build that many universities may ultimately possess one. This means accelerator technology that is currently beyond the reach of many researchers may soon be far more widely available, which has the potential to speed up the pace of scientific investigation. Read more on the University of Michigan website…